Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Exp Appl Acarol ; 92(2): 241-252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38321309

RESUMO

Tick-borne relapsing fever spirochetes of genus Borrelia thrive in enzootic cycles involving Ornithodoros spp. (Argasidae) mainly, and rodents. The isolation of these spirochetes usually involves a murine model in which ticks are fed and the spirochetes detected in blood several days later. Such an experiment also demonstrates that a given species of tick is competent in the transmission of the bacteria. Here, soft ticks Ornithodoros octodontus were collected in Northern Chile with the objective to experimentally determine its capacity to transmit a Borrelia sp. detected in a previous study. Two Guinea pigs (Cavia porcellus) were used to feed nymphs and adults of O. octodontus and the spirochetes in blood were inspected by dark-field microscopy and nested PCR. Although spirochetes were not seen in blood, DNA was detected in only one animal 11 days after the ticks were fed. Genetic sequences of Borrelia flaB, clpX, pepX, recG, rplB, and uvrA genes retrieved from DNA extraction of positive blood were employed to construct two phylogenetic analyses. On the one hand, the flaB tree showed the Borrelia sp. transmitted by O. octodontus clustering with Borrelia sp. Alcohuaz, which was previously detected in that same tick species. On the other hand, concatenated clpX-pepX-recG-rplB-uvrA demonstrated that the characterized spirochete branches together with "Candidatus Borrelia caatinga", a recently discovered species from Brazil. Based on the genetic profile presented in this study, the name "Candidatus Borrelia octodonta" is proposed for the species transmitted by O. octodontus. The fact that spirochetes were not observed in blood of guinea pigs, may reflect the occurrence of low spirochetemia, which could be explained because the susceptibility of infection varies depending on the rodent species that is used in experimental models. Although the vertebrate reservoir of "Ca. Borrelia octodonta" is still unknown, Octodon degus, a rodent species that is commonly parasitized by O. octodontus, should be a future target to elucidate this issue.


Assuntos
Argasidae , Borrelia , Besouros , Ornithodoros , Febre Recorrente , Doenças dos Roedores , Animais , Cobaias , Camundongos , Ornithodoros/genética , Febre Recorrente/veterinária , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Chile , Filogenia , Roedores , DNA
2.
PLoS Negl Trop Dis ; 17(11): e0011719, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934730

RESUMO

Subolesin is a conserved molecule in both hard and soft ticks and is considered as an effective candidate molecule for the development of anti-tick vaccine. Previous studies have reported the role of subolesin in blood feeding, reproduction, development, and gene expression in hard ticks. However, studies addressing the role of subolesin in soft ticks are limited. In this study, we report that subolesin is not only important in soft tick Ornithodoros turicata americanus blood feeding but also in the regulation of innate immune gene expression in these ticks. We identified and characterized several putative innate immune genes including Toll, Lysozyme precursor (Lp), fibrinogen-domain containing protein (FDP), cystatin and ML-domain containing protein (MLD) in O. turicata americanus ticks. Quantitative real-time polymerase chain reaction analysis revealed the expression of these genes in both O. turicata americanus salivary glands and midgut and in all developmental stages of these soft ticks. Significantly increased expression of fdp was noted in salivary glands and midgut upon O. turicata americanus blood feeding. Furthermore, RNAi-mediated knockdown of O. turicata americanus subolesin expression affected blood feeding and innate immune gene expression in these ticks. Significant downregulation of toll, lp, fdp, cystatin, and mld transcripts was evident in sub-dsRNA-treated ticks when compared to the levels noted in mock-dsRNA-treated control. Collectively, our study not only reports identification and characterization of various innate immune genes in O. turicata americanus ticks but also provides evidence on the role of subolesin in blood feeding and innate immune gene expression in these medically important ticks.


Assuntos
Argasidae , Cistatinas , Ornithodoros , Vacinas , Animais , Ornithodoros/genética , Vacinas/genética , Expressão Gênica , Cistatinas/genética , Imunidade Inata
3.
Ticks Tick Borne Dis ; 14(6): 102249, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689036

RESUMO

Ornithodoros erraticus and Ornithodoros moubata ticks are the main vectors of the agents of human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin and Africa, respectively. Tick ​​saliva is crucial for complete tick feeding and pathogen transmission, as it contains numerous molecules such as proteins, lipids, and non-coding RNAs (ncRNA) including microRNAs (miRNA). MiRNAs are small ncRNAs capable of regulating the expression of their target messenger RNA (mRNA) leading to degradation or inhibition of its translation into protein. Research on miRNAs from ixodid ticks has revealed that miRNAs are involved in the regulation of different physiological processes of ticks, as well as in the modulation of host gene expression, immune response to tick bite and pathogen transmission. Regarding argasid ticks, there is not information about their miRNAs or their potential involvement in tick physiology and/or in the regulation of the tick-host-pathogen interactions. The aim of this work was to profile the miRNAs expressed in the saliva of O. erraticus and O. moubata, and the in silico prediction and functional analysis of their target genes in the swine host. As a whole, up to 72 conserved miRNAs families were identified in both species: 35 of them were shared and 23 and 14 families were unique to O. erraticus and O. moubata, respectively. The most abundant miRNAs families were mir-1, mir-10 and let-7 in O. erraticus and let-7, mir-252, mir-10 in O. moubata. Four miRNAs sequences of each species were validated by RT-qPCR confirming their presence in the saliva. Target gene prediction in the host (Sus scrofa) and functional analysis showed that the selected miRNAs are mainly involved in processes related to signal transduction, regulation of mRNA transcription and gene expression, synapse regulation, immune response, angiogenesis and vascular development. These results suggest that miRNAs could play an important role at the tick-host interface, providing new insights into this complex relationship that may contribute to a more precise selection of tick molecules for the development of therapeutic and immune strategies to control tick infestations and tick-borne pathogens.


Assuntos
Febre Suína Africana , MicroRNAs , Ornithodoros , Animais , Humanos , Suínos , Ornithodoros/genética , Saliva , MicroRNAs/genética
4.
J Med Entomol ; 60(5): 968-977, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37455018

RESUMO

Soft ticks (Argasidae) of the Pavlovskyella Pospelova-Shtrom subgenus are important vectors of relapsing fever spirochetes, which are agents of disease globally. South American representatives of the Pavlovskyella subgenus include 3 species: Ornithodoros (Pavlovskyella) brasiliensis Aragão, Ornithodoros (Pavlovskyella) furcosus Neumann, and Ornithodoros (Pavlovskyella) rostratus Aragão. Here, we describe a fourth species based on morphological and mitogenomic evidence of ticks collected in burrows of unknown hosts in central Chile. The larva of the new species separates from other South American soft ticks by the following combination of characters: 13 pairs of dorsolateral setae, dorsal plate hexagonal, hypostome blunt with denticles from apex almost to the base. Adults of this new species lack cheeks, possess a dorsoventral groove, and have humps, similar to O. (P.) brasiliensis; however, they lack bulging structures on the flanks of idiosoma. Moreover, females and males differ from O. (P.) rostratus by having 3 humps instead of spurs in tarsi I and from O. (P.) furcosus because of their smaller size and thinner anterior lip of the genital aperture in females. The phylogenetic analysis performed with mitogenomes of the Argasidae family depicts the new Pavlovskyella species from Chile in a monophyletic clade with other South American species in the subgenus, confirming a regional group.


Assuntos
Ácaros e Carrapatos , Argasidae , Ornithodoros , Feminino , Masculino , Animais , Argasidae/genética , Chile , Filogenia , Ornithodoros/genética
5.
Vet Res Commun ; 47(4): 2339-2350, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37422609

RESUMO

Bats represent the second order of mammals with the highest number of species worldwide with over 1,616 species, and almost 10% of them are recorded in Mexico. These mammals have a great diversity of ectoparasites, in particular soft ticks of the genus Ornithodoros. Desmodus rotundus is one of the bat species that has scarcely been studied in terms of tick species richness in Mexico, with three tick species reported in five of the 32 Mexican states. For this reason, the aim of the present work was to identify ticks associated with D. rotundus from Central Mexico. Fieldwork was undertaken in the municipality El Marqués, Ejido Atongo A, Querétaro, Mexico. Bats were captured using mist nets and were visually inspected for tick presence. The ectoparasites were identified morphologically and molecularly with the use of mitochondrial markers 16SrDNA and cytochrome oxidase subunit I (COI). A total of 30 D. rotundus (1 female, 29 males) were captured, from which 20 larvae identified as Ornithodoros yumatensis were recovered. Molecular analysis confirmed the presence of this species with identity values of 99-100% with sequences of this species from the southwestern US, and the Yucatán Peninsula, Mexico. This is the first report of ticks associated with bats for the state of Querétaro, providing the first sequences of the COI gene from Mexican populations of O. yumatensis and shows an increase in the distribution of this soft tick across Central Mexico.


Assuntos
Quirópteros , Ornithodoros , Masculino , Animais , Feminino , Ornithodoros/genética , México , Quirópteros/genética , Código de Barras de DNA Taxonômico/veterinária , Larva , Filogenia
6.
PLoS One ; 17(12): e0278582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36473013

RESUMO

Bacterial endosymbionts are abundantly found in both hard and soft ticks. Occidentia massiliensis, a rickettsial endosymbiont, was first identified in the soft tick Ornithodoros sonrai collected from Senegal and later was identified in a hard tick Africaniella transversale. In this study, we noted the presence of Occidentia species, designated as Occidentia-like species, in a soft tick O. turicata americanus. Sequencing and phylogenetic analyses of the two genetic markers, 16S rRNA and groEL confirmed the presence of Occidentia-like species in O. turicata americanus ticks. The Occidentia-like species was noted to be present in all developmental stages of O. turicata americanus and in different tick tissues including ovaries, synganglion, guts and salivary gland. The levels of Occidentia-like species 16S rRNA transcripts were noted to be significantly higher in ovaries than in a gut tissue. In addition, Occidentia-like species groEL expression was noted to be significantly higher in tick synganglion than in ovaries and gut tissues. Furthermore, levels of Occidentia-like species 16S rRNA transcripts increased significantly upon O. turicata americanus blood feeding. Taken together, our study not only shows that Occidentia-like species is present in O. turicata americanus but also suggests that this bacterium may play a role in tick-bacteria interactions.


Assuntos
Argasidae , Ornithodoros , Animais , Argasidae/genética , Ornithodoros/genética , RNA Ribossômico 16S/genética , Filogenia , Senegal
7.
Methods Mol Biol ; 2503: 105-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575889

RESUMO

Molecular biology methods are highly sensitive to detect the genome of pathogens and to study their biology. Polymerase chain reaction (PCR) and reverse transcription followed by a polymerase chain reaction (RT-PCR) permit the detection of the presence and the replication of African swine fever virus in soft ticks. Here, we described our techniques to detect and quantify DNA and RNA of African swine fever virus in soft ticks including a housekeeping gene of soft ticks as internal control.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Argasidae , Ornithodoros , Vírus da Febre Suína Africana/genética , Animais , Argasidae/genética , DNA Viral/genética , Ornithodoros/genética , RNA/genética , Suínos
8.
Parasit Vectors ; 15(1): 102, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534871

RESUMO

BACKGROUND: Relapsing fever borreliosis is an infectious disease caused by bacteria of the genus Borrelia, inflicting recurrent episodes of fever and spirochetemia in humans. Borrelia persica, the causative agent of relapsing fever in Israel, is prevalent over a broad geographic area that extends from India to Egypt. It is transmitted by the soft tick Ornithodoros tholozani and causes disease in humans as well as domestic cats and dogs. The goal of this study was to survey domestic dogs and cats in Israel for infection with B. persica. METHODS: Blood, sera and demographic and clinical data were collected from dogs and cats brought for veterinary care in central Israel. PCR followed by DNA sequencing was used to detect B. persica DNA in blood samples, and an enzyme-linked immunosorbent assay (ELISA) was used to detect antibodies reactive with B. persica antigens in sera from the same animals. This is the first serological survey of B. persica in dogs and the first survey for antibodies reactive with a relapsing fever Borrelia sp. in cats globally. RESULTS: Four of the 208 dogs (1.9%) and three of 103 cats (2.9%) sampled were positive by PCR for B. persica DNA, and 24 dogs (11.5%) and 18 cats (17.5%) were seropositive for B. persica antigen by ELISA. The ratio between PCR-positivity and seropositivity in both the dog and cat populations was 1:6. All four PCR-positive dogs and two of three PCR-positive cats were seronegative, suggesting a probable recent infection. Thrombocytopenia showed significant association with seropositivity in dogs (P = 0.003). In cats, anemia had a significant association with seropositivity (P = 0.0001), and thrombocytopenia was associated with the combined prevalence of seropositivity or PCR-positivity (P = 0.022). CONCLUSIONS: Borrelia persica infection is more prevalent and widespread in domestic canine and feline populations in Israel than previously thought. Dogs and cats may play a role as reservoirs and sentinels for human infection. Precautions should be taken to prevent transfusion-transmitted infection between blood donor and recipient animals.


Assuntos
Infecções por Borrelia , Borrelia , Doenças do Gato , Doenças do Cão , Ornithodoros , Febre Recorrente , Trombocitopenia , Animais , Borrelia/genética , Doenças do Gato/epidemiologia , Doenças do Gato/microbiologia , Gatos , DNA , Doenças do Cão/epidemiologia , Cães , Israel/epidemiologia , Ornithodoros/genética , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Febre Recorrente/veterinária , Estudos Soroepidemiológicos
9.
Exp Appl Acarol ; 86(4): 567-581, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35305191

RESUMO

In Brazil, 19 species of the genus Ornithodoros (Acari: Argasidae) have been reported. The medical and veterinary importance of Ornithodoros ticks has increased substantially in recent decades, with the discovery of various relapsing fever Borrelia infecting Ornithodoros ticks. Herein, argasid ticks were collected during 2019-2020 from caves, abandoned nests and homes in various regions of Ceará State, Brazilian semiarid-Caatinga biome. In total, 289 ticks were collected and identified into five species: Ornithodoros cavernicolous (176 specimens), Ornithodoros fonsecai (81), Ornithodoros mimon (12), Ornithodoros rietcorreai (4), and a fifth species provisionally retained as Ornithodoros sp. Ubajara. Tick identifications were corroborated by a phylogenetic analysis inferred using the 16S rRNA gene. To extend the molecular characterization, DNA samples were tested by an additional PCR assay targeting the nuclear Histone 3 (H3) gene. Because there were no H3 sequences of argasids in GenBank, we extended this PCR assay for additional Ornithodoros species, available in our laboratory. In total, 15 partial sequences of the H3 gene were generated for 10 Ornithodoros species, showing 0% intraspecific polymorphism, and 1.5-11.6% interspecific polymorphism. Phylogenetic analyses inferred segregated Ornithodoros sp. Ubajara as a potential novel species. Our results also highlight the potential of the H3 gene for deeper phylogenetic analyses of argasids. The present study provides new data for argasid ticks of the genus Ornithodoros in the Caatinga biome. Because some of these tick species are human-biting ticks, active surveillance for the incidence of human infection due to Ornithodoros-borne agents is imperative in the Caatinga biome.


Assuntos
Ácaros e Carrapatos , Argasidae , Ornithodoros , Animais , Argasidae/genética , Brasil/epidemiologia , Ecossistema , Histonas/genética , Ornithodoros/genética , Filogenia , RNA Ribossômico 16S/genética
10.
PLoS Negl Trop Dis ; 15(8): e0009642, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398885

RESUMO

Tick-borne relapsing fever (TBRF) spirochetes are likely an overlooked cause of disease in Latin America. In Panama, the pathogens were first reported to cause human disease in the early 1900s. Recent collections of Ornithodoros puertoricensis from human dwellings in Panama prompted our interest to determine whether spirochetes still circulate in the country. Ornithodoros puertoricensis ticks were collected at field sites around the City of Panama. In the laboratory, the ticks were determined to be infected with TBRF spirochetes by transmission to mice, and we report the laboratory isolation and genetic characterization of a species of TBRF spirochete from Panama. Since this was the first isolation of a species of TBRF spirochete from Central America, we propose to designate the bacteria as Borrelia puertoricensis sp. nov. This is consistent with TBRF spirochete species nomenclature from North America that are designated after their tick vector. These findings warrant further investigations to assess the threat B. puertoricensis sp. nov. may impose on human health.


Assuntos
Borrelia/genética , Borrelia/isolamento & purificação , Ornithodoros/microbiologia , Febre Recorrente/epidemiologia , Infestações por Carrapato/epidemiologia , Animais , DNA Bacteriano , Comportamento Alimentar , Ornithodoros/genética , Ornithodoros/fisiologia , Panamá/epidemiologia , Filogenia , RNA Ribossômico 16S/genética , Febre Recorrente/microbiologia , Roedores/parasitologia , Análise de Sequência de DNA , Infestações por Carrapato/microbiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia
11.
Parasit Vectors ; 14(1): 396, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380568

RESUMO

BACKGROUND: The argasid tick Ornithodoros moubata is the main vector in mainland Africa of African swine fever virus and the spirochete Borrelia duttoni, which causes human relapsing fever. The elimination of populations of O. moubata would contribute to the prevention and control of these two serious diseases. Anti-tick vaccines are an eco-friendly and sustainable means of eliminating tick populations. Tick saliva forms part of the tick-host interface, and knowledge of its composition is key to the identification and selection of vaccine candidate antigens. The aim of the present work is to increase the body of data on the composition of the saliva proteome of adult O. moubata ticks, particularly of females, since in-depth knowledge of the O. moubata sialome will allow the identification and selection of novel salivary antigens as targets for tick vaccines. METHODS: We analysed samples of female and male saliva using two different mass spectrometry (MS) approaches: data-dependent acquisition liquid chromatography-tandem MS (LC-MS/MS) and sequential window acquisition of all theoretical fragment ion spectra-MS (SWATH-MS). To maximise the number of proteins identified, a proteomics informed by transcriptomics analysis was applied using the O. moubata salivary transcriptomic dataset previously obtained by RNA-Seq. RESULTS: SWATH-MS proved to be superior to LC-MS/MS for the study of female saliva, since it identified 61.2% more proteins than the latter, the reproducibility of results was enhanced with its use, and it provided a quantitative picture of salivary components. In total, we identified 299 non-redundant proteins in the saliva of O. moubata, and quantified the expression of 165 of these in both male and female saliva, among which 13 were significantly overexpressed in females and 40 in males. These results indicate important quantitative differences in the saliva proteome between the sexes. CONCLUSIONS: This work expands our knowledge of the O. moubata sialome, particularly that of females, by increasing the number of identified novel salivary proteins, which have different functions at the tick-host feeding interface. This new knowledge taken together with information on the O. moubata sialotranscriptome will allow a more rational selection of salivary candidates as antigen targets for tick vaccine development.


Assuntos
Perfilação da Expressão Gênica , Ornithodoros/genética , Proteoma , Proteômica , Saliva/química , Proteínas e Peptídeos Salivares/análise , Animais , Proteínas de Artrópodes , Cromatografia Líquida , Feminino , Masculino , Ornithodoros/química , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
12.
Ticks Tick Borne Dis ; 12(5): 101748, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052668

RESUMO

Ornithodoros tabajara n. sp. is described from laboratory-reared larvae and adult specimens collected in the Brazilian Caatinga. This new species shares the ecological niche with Ornithodoros rietcorreai and is likely associated with colonial rodents of genus Kerodon. However, O. tabajara n. sp. is morphologically easy to distinguish from O. rietcorreai and other Neotropical Ornithodoros by a unique combination of characters: larva with 17 pairs of dorsal setae (seven anterolateral, three central and seven posterolateral), sub-oval dorsal plate, hypostome blunt apically with dentition formula 2/2 along its extension, only one pair of posthypostomal setae, six pairs of sternal setae, posteromedian setae absent, and leave-shaped anal valves; alive adults with whitish islands of mammillae symmetrically distributed on dorsum (not visible in ethanol-preserved specimens), and median disk merging with posteromedian file. A phylogenetic analysis performed with mitochondrial 16S rDNA sequences points O. tabajara n. sp. as O. rietcorreai's sister taxon, which rises the hypothesis of sympatric speciation.


Assuntos
Classificação , Ornithodoros/classificação , Animais , Argasidae/anatomia & histologia , Argasidae/classificação , Argasidae/genética , Brasil , Ecossistema , Florestas , Especiação Genética , Ornithodoros/anatomia & histologia , Ornithodoros/genética , Filogenia , RNA Ribossômico 16S/genética
13.
Syst Parasitol ; 98(3): 231-246, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33772429

RESUMO

Based on tick specimens collected recently in Mexico, Nicaragua, Panama and Brazil, we provide morphological descriptions of the nymph and adults of Ornithodoros clarki Jones & Clifford, 1972 from the first three countries, and the larva and nymph of Ornithodoros rondoniensis (Labruna, Terassini, Camargo, Brandão, Ribeiro & Estrada-Peña, 2008) from Brazil. Also, an analysis of mitochondrial 16S rDNA sequences was performed to analyze the phylogenetic relationships of these tick species. Adults and nymphs of O. clarki and O. rondoniensis are unique among the Argasidae family by presenting exceptionally large spiracular plates with small goblets, and an integument with smooth polygonal mammillae. However, these two species are morphologically distinct based on specific patterns of coxal folds, idiosomal mammillae and pilosity, and female genital flap. In contrast, the larvae of O. clarki and O. rondoniensis are morphologically identical, except for a general larger size of the former species; this slight difference is corroborated by Principal Component Analysis (PCA) by using 40 morphometric variables. Phylogenetic analyses including 16S rDNA partial sequences of different Ornithodoros taxa from Central and South America indicate that O. rondoniensis from Brazil diverges from O. clarki from Mexico, Nicaragua and Panama. However, phylogenetic distance separating both alleged species is similar or slightly lower than the distances depicted for conspecific populations of a few other Ornithodoros species. Nonetheless, our primary criterion to maintain O. rondoniensis as a valid species is because its adult and nymphal stages do present distinct morphological traits that easily distinguish these postlarval stages from O. clarki.


Assuntos
Ornithodoros , Filogenia , América , Animais , Larva/anatomia & histologia , Ninfa/anatomia & histologia , Ornithodoros/anatomia & histologia , Ornithodoros/classificação , Ornithodoros/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
14.
Parasit Vectors ; 14(1): 170, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743776

RESUMO

BACKGROUND: The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. Tick salivary proteins secreted to the host at the feeding interface play critical roles for tick feeding and may contribute to host infection by tick-borne pathogens; accordingly, these proteins represent interesting antigen targets for the development of vaccines aimed at the control and prevention of tick infestations and tick-borne diseases. METHODS: To identify these proteins, the transcriptome of the salivary glands of O. erraticus was de novo assembled and the salivary gene expression dynamics assessed throughout the trophogonic cycle using Illumina sequencing. The genes differentially upregulated after feeding were selected and discussed as potential antigen candidates for tick vaccines. RESULTS: Transcriptome assembly resulted in 22,007 transcripts and 18,961 annotated transcripts, which represent 86.15% of annotation success. Most salivary gene expression took place during the first 7 days after feeding (2088 upregulated transcripts), while only a few genes (122 upregulated transcripts) were differentially expressed from day 7 post-feeding onwards. The protein families more abundantly overrepresented after feeding were lipocalins, acid and basic tail proteins, proteases (particularly metalloproteases), protease inhibitors, secreted phospholipases A2, 5'-nucleotidases/apyrases and heme-binding vitellogenin-like proteins. All of them are functionally related to blood ingestion and regulation of host defensive responses, so they can be interesting candidate protective antigens for vaccines. CONCLUSIONS: The O. erraticus sialotranscriptome contains thousands of protein coding sequences-many of them belonging to large conserved multigene protein families-and shows a complexity and functional redundancy similar to those observed in the sialomes of other argasid and ixodid tick species. This high functional redundancy emphasises the need for developing multiantigenic tick vaccines to reach full protection. This research provides a set of promising candidate antigens for the development of vaccines for the control of O. erraticus infestations and prevention of tick-borne diseases of public and veterinary health relevance, such as TBRF and ASF. Additionally, this transcriptome constitutes a valuable reference database for proteomics studies of the saliva and salivary glands of O. erraticus.


Assuntos
Proteínas de Artrópodes/genética , Expressão Gênica , Ornithodoros/genética , Glândulas Salivares/fisiologia , Proteínas e Peptídeos Salivares/genética , Análise de Sequência de RNA , Animais , Vetores de Doenças , Feminino , Perfilação da Expressão Gênica , Ornithodoros/anatomia & histologia , Proteômica
15.
Ticks Tick Borne Dis ; 12(4): 101688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33652332

RESUMO

Argasid systematics remains controversial with widespread adherence to the Hoogstraal (1985) classification scheme, even though it does not reflect evolutionary relationships and results in paraphyly for the main genera of soft ticks (Argasidae), namely Argas and Ornithodoros. The alternative classification scheme, proposed by Klompen and Oliver (1993), has problems of its own: most notably paraphyly of the subgenus Pavlovskyella and the controversial grouping together of the subgenera Alectorobius, Antricola, Carios, Chiropterargas, Nothoaspis, Parantricola, Reticulinasus and Subparmatus into the genus Carios. Recent phylogenetic analyses of 18S/28S rRNA sequences and mitochondrial genomes agree with the scheme of Klompen and Oliver (1993), with regard to the paraphyly of Pavlovskyella, placement of Alveonasus, Ogadenus, Proknekalia and Secretargas in the Argasinae and placement of Carios and Chiropterargas in the Ornithodorinae (Mans et al., 2019). The Carios clade and its constituent subgenera remain controversial, since the phylogenetic position of its type species Carios (Carios) vespertilionis Latreille, 1796 (formerly Argas vespertilionis) has not been determined with confidence. The current study aimed to resolve Carios sensu lato Klompen and Oliver, 1993, and Carios sensu stricto Hoogstraal, 1985, by determining and analysing phylogenetic nuclear and mitochondrial markers for C. (C.) vespertilionis. Both the nuclear and mitochondrial markers support placement of Carios s.s. within the subfamily Ornithodorinae, but to the exclusion of the clade that includes the 6 other subgenera that are part of Carios s.l. Klompen and Oliver (1993), namely Alectorobius, Antricola, Nothoaspis, Parantricola, Reticulinasus and Subparmatus. These 6 subgenera form a monophyletic clade that might be placed as new subgenera within the genus Alectorobius, or elevated to genera. Given the substantial differences in biology among these subgenera, we propose that these 6 subgenera be elevated to genera. Thus, we propose to modify the classification scheme of Mans et al. (2019) so that the subfamily Argasinae now has six genera, Alveonasus, Argas (subgenera Argas and Persicargas), Navis, Ogadenus, Proknekalia and Secretargas, and the subfamily Ornithodorinae has nine genera, Alectorobius, Antricola (subgenera Antricola and Parantricola), Carios, Chiropterargas, Nothoaspis, Ornithodoros (subgenera Microargas, Ornamentum, Ornithodoros, Pavlovskyella and Theriodoros), Otobius, Reticulinasus and Subparmatus (genera indicated in bold).


Assuntos
Argasidae/classificação , Genoma Mitocondrial , Animais , Argas/classificação , Argas/genética , Argas/crescimento & desenvolvimento , Argasidae/genética , Argasidae/crescimento & desenvolvimento , Feminino , Marcadores Genéticos , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Ornithodoros/classificação , Ornithodoros/genética , Ornithodoros/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 18S/análise , RNA Ribossômico 28S/análise
16.
PLoS Negl Trop Dis ; 15(2): e0009105, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544727

RESUMO

The argasid tick Ornithodoros moubata is the main vector of human relapsing fever (HRF) and African swine fever (ASF) in Africa. Salivary proteins are part of the host-tick interface and play vital roles in the tick feeding process and the host infection by tick-borne pathogens; they represent interesting targets for immune interventions aimed at tick control. The present work describes the transcriptome profile of salivary glands of O. moubata and assesses the gene expression dynamics along the trophogonic cycle using Illumina sequencing. De novo transcriptome assembling resulted in 71,194 transcript clusters and 41,011 annotated transcripts, which represent 57.6% of the annotation success. Most salivary gene expression takes place during the first 7 days after feeding (6,287 upregulated transcripts), while a minority of genes (203 upregulated transcripts) are differentially expressed between 7 and 14 days after feeding. The functional protein groups more abundantly overrepresented after blood feeding were lipocalins, proteases (especially metalloproteases), protease inhibitors including the Kunitz/BPTI-family, proteins with phospholipase A2 activity, acid tail proteins, basic tail proteins, vitellogenins, the 7DB family and proteins involved in tick immunity and defence. The complexity and functional redundancy observed in the sialotranscriptome of O. moubata are comparable to those of the sialomes of other argasid and ixodid ticks. This transcriptome provides a valuable reference database for ongoing proteomics studies of the salivary glands and saliva of O. moubata aimed at confirming and expanding previous data on the O. moubata sialoproteome.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Ornithodoros/genética , Ornithodoros/metabolismo , Transcriptoma , África , Febre Suína Africana , Animais , Asfarviridae , Feminino , Expressão Gênica , Imunidade , Ixodidae/genética , Ixodidae/metabolismo , Redes e Vias Metabólicas/genética , Ornithodoros/imunologia , Ornithodoros/virologia , Fosfolipases A2/metabolismo , Proteômica/métodos , Saliva , Glândulas Salivares , Suínos
17.
BMC Biol ; 18(1): 136, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032594

RESUMO

BACKGROUND: African swine fever virus (ASFV) is a most devastating pathogen affecting swine. In 2007, ASFV was introduced into Eastern Europe where it continuously circulates and recently reached Western Europe and Asia, leading to a socio-economic crisis of global proportion. In Africa, where ASFV was first described in 1921, it is transmitted between warthogs and soft ticks of the genus Ornithodoros in a so-called sylvatic cycle. However, analyses into this virus' evolution are aggravated by the absence of any closely related viruses. Even ancient endogenous viral elements, viral sequences integrated into a host's genome many thousand years ago that have proven extremely valuable to analyse virus evolution, remain to be identified. Therefore, the evolution of ASFV, the only known DNA virus transmitted by arthropods, remains a mystery. RESULTS: For the identification of ASFV-like sequences, we sequenced DNA from different recent Ornithodoros tick species, e.g. O. moubata and O. porcinus, O. moubata tick cells and also 100-year-old O. moubata and O. porcinus ticks using high-throughput sequencing. We used BLAST analyses for the identification of ASFV-like sequences and further analysed the data through phylogenetic reconstruction and molecular clock analyses. In addition, we performed tick infection experiments as well as additional small RNA sequencing of O. moubata and O. porcinus soft ticks. CONCLUSION: Here, we show that soft ticks of the Ornithodoros moubata group, the natural arthropod vector of ASFV, harbour African swine fever virus-like integrated (ASFLI) elements corresponding to up to 10% (over 20 kb) of the ASFV genome. Through orthologous dating and molecular clock analyses, we provide data suggesting that integration could have occurred over 1.47 million years ago. Furthermore, we provide data showing ASFLI-element specific siRNA and piRNA in ticks and tick cells allowing for speculations on a possible role of ASFLI-elements in RNA interference-based protection against ASFV in ticks. We suggest that these elements, shaped through many years of co-evolution, could be part of an evolutionary virus-vector 'arms race', a finding that has not only high impact on our understanding of the co-evolution of viruses with their hosts but also provides a glimpse into the evolution of ASFV.


Assuntos
Vírus da Febre Suína Africana/genética , Vetores Artrópodes/genética , Evolução Molecular , Genoma , Ornithodoros/genética , Animais , Evolução Biológica , Filogenia , Análise de Sequência de DNA
18.
J Parasitol ; 106(5): 546-563, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916707

RESUMO

Ticks and tick-borne diseases are important issues worldwide because of their effects on animal and human health. The genus Ornithodoros, which is included in the family Argasidae, is typically associated with wild animals, including seabirds. In this study, samples from the nests of seabirds and surrounding soil were collected to investigate Ornithodoros spp. from 9 uninhabited islands in the western, eastern, and southern parts of Korea from April 2017 to October 2018. The islands are known as the breeding places of migratory and resident birds. Ticks were collected from soil and nest material of seabirds using a Tullgren funnel and identified using 16S rRNA and the cytochrome c oxidase 1 gene (COI), and host animals of soft ticks were identified using the mitochondrial DNA cytochrome b gene by a polymerase chain reaction. In the sequence identity of the 16S rRNA gene fragment of Ornithodoros sp., Ornithodoros sawaii was identified as the closest homologous sequence, and the new Ornithodoros sp. was newly identified. We found that the newly identified Ornithodoros sp. in the Republic of Korea was located in uninhabited islands used as breeding places by the black-tailed gull, Larus crassirostris.


Assuntos
Doenças das Aves/parasitologia , Ornithodoros/classificação , Infestações por Carrapato/veterinária , Animais , Aves , Clonagem Molecular , DNA/química , DNA/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ilhas , Funções Verossimilhança , Microscopia Eletrônica de Varredura , Ornithodoros/genética , Ornithodoros/ultraestrutura , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , República da Coreia , Solo/parasitologia , Infestações por Carrapato/parasitologia
19.
Sci Rep ; 10(1): 13443, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778731

RESUMO

Tick cell lines are an easy-to-handle system for the study of viral and bacterial infections and other aspects of tick cellular processes. Tick cell cultures are often continuously cultivated, as freezing can affect their viability. However, the long-term cultivation of tick cells can influence their genome stability. In the present study, we investigated karyotype and genome size of tick cell lines. Though 16S rDNA sequencing showed the similarity between Ixodes spp. cell lines at different passages, their karyotypes differed from 2n = 28 chromosomes for parental Ixodes spp. ticks, and both increase and decrease in chromosome numbers were observed. For example, the highly passaged Ixodes scapularis cell line ISE18 and Ixodes ricinus cell lines IRE/CTVM19 and IRE/CTVM20 had modal chromosome numbers 48, 23 and 48, respectively. Also, the Ornithodoros moubata cell line OME/CTVM22 had the modal chromosome number 33 instead of 2n = 20 chromosomes for Ornithodoros spp. ticks. All studied tick cell lines had a larger genome size in comparison to the genomes of the parental ticks. Thus, highly passaged tick cell lines can be used for research purposes, but possible differences in encoded genetic information and downstream cellular processes, between different cell populations, should be taken into account.


Assuntos
Carrapatos/crescimento & desenvolvimento , Carrapatos/genética , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Ixodidae/genética , Cariótipo , Ornithodoros/genética , RNA Ribossômico 16S/genética
20.
Ticks Tick Borne Dis ; 11(5): 101473, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32723648

RESUMO

Larvae of Ornithodoros knoxjonesi collected at five localities in three countries were studied using morphological and molecular methods to confirm this species' taxonomic validity. The larva of O. knoxjonesi is characterized as having 14 pairs of dorsal setae, eight pairs of ventral setae, plus a posteromedian seta; an elongate dorsal plate, tapered anteriorly; and a hypostome that is narrower near its midlength, with posteriorly projecting denticles. Although the larvae of O. knoxjonesi and Ornithodoros peropteryx are morphologically quite similar, the larva of O. knoxjonesi is characterized as having dorsal setae that are wider at the tip than at the base, while in O. peropteryx these setae are narrower at the tip than at the base; moreover, the dorsal setae are shorter in O. knoxjonesi (Al 0.037-0.065; Pl 0.035-0.059) than in O. peropteryx (Al 0.120-0.132; Pl 0.080-0.096). These species also differ in that O. knoxjonesi possesses only the Al seta on tarsus I, whereas O. peropteryx has both Al and Pl setae. And while both species have two setae on coxae I-III, in O. knoxjonesi the anterior seta is tapering and smooth and the posterior is fringed, while both setae are fringed in O. peropteryx. At the molecular level, based on a maximum likelihood analysis using approximately 400 bp of the mitochondrial 16S rDNA gene, O. knoxjonesi appears as an independent lineage, separated from O. peropteryx by a genetic distance of 16.28 %. Balantiopteryx plicata is a common host of O. knoxjonesi; however, in this work we report Pteronotus personatus and Pteronotus gymnonotus as new hosts of this tick species.


Assuntos
Distribuição Animal , Quirópteros/parasitologia , Ornithodoros/classificação , Ornithodoros/fisiologia , Animais , Costa Rica , DNA Ribossômico/análise , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , México , Nicarágua , Ornithodoros/genética , Ornithodoros/crescimento & desenvolvimento , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...